Can we synthesize gold nanoparticle in DMSO solvent

N2 - In this report, we present methods of functionalization of AuNP's with deep-cavity cavitands that can include organic molecules. Two types of deep-cavity cavitand-functionalized AuNP's have been synthesized and characterized, one soluble in organic solvents and the other in water. Functionalized AuNP soluble in organic solvents forms a 1:1 host-guest complex where the guest is exposed to the exterior solvents. The one soluble in water forms a 2:1 host-guest complex where the guest is protected from solvent water. Phosphorescence from thiones and benzil included within heterocapsules attached to AuNP was quenched by gold atoms present closer to the guests included within deep-cavity cavitands. During this investigation, we have synthesized four new deep-cavity cavitands. Of these, two thiol-functionalized hosts allowed us to make stable AuNP's. However, AuNP's protected with two amine-functionalized cavitands tended to aggregate within a day.

involving liters of organic solvent ..

Preparation of hydrophobic gold nanoparticles with safe organic solvents by ..

of iron oxide nanoparticles, the synthesis of ..

N2 - Gold nanoparticles were synthesized using a seed-mediated wet chemical approach with a polymerizable surfactant, 11-(acryloyloxy) undecyltrimethylammonium bromide. The polymerizable surfactant forms a bilayer on the surface of the gold nanoparticles with the quaternary positive head groups facing the bulk water, and the polymerizable groups reside in the hydrophobic region. Evidence for on-particle polymerization using a cationic free radical initiator was confirmed by NMR and FTIR analyses. Ultraviolet-visible spectroscopy, transmission electron microscopy, and dynamic light scattering measurements showed no particle aggregation after polymerization. In contrast to the nanoparticles before polymerization, the nanoparticles with a polymerized bilayer showed remarkable stability against dialysis, centrifugation-resuspension cycles, and extraction with organic solvent. This enhanced stability was linked to the decrease in surfactant desorption from the surface of the gold nanoparticles as evident from mass spectrometry analysis of supernatants. Our results indicate that the use of a polymerizable surfactant as a directing agent to prepare gold nanoparticles and subsequent "fixing" the surfactant bilayer by polymerization is an effective approach to enhance the stability of the final nanoparticles.

Our approach enables the facile synthesis of organic solvent- and ..

AB - Gold nanoparticles were synthesized using a seed-mediated wet chemical approach with a polymerizable surfactant, 11-(acryloyloxy) undecyltrimethylammonium bromide. The polymerizable surfactant forms a bilayer on the surface of the gold nanoparticles with the quaternary positive head groups facing the bulk water, and the polymerizable groups reside in the hydrophobic region. Evidence for on-particle polymerization using a cationic free radical initiator was confirmed by NMR and FTIR analyses. Ultraviolet-visible spectroscopy, transmission electron microscopy, and dynamic light scattering measurements showed no particle aggregation after polymerization. In contrast to the nanoparticles before polymerization, the nanoparticles with a polymerized bilayer showed remarkable stability against dialysis, centrifugation-resuspension cycles, and extraction with organic solvent. This enhanced stability was linked to the decrease in surfactant desorption from the surface of the gold nanoparticles as evident from mass spectrometry analysis of supernatants. Our results indicate that the use of a polymerizable surfactant as a directing agent to prepare gold nanoparticles and subsequent "fixing" the surfactant bilayer by polymerization is an effective approach to enhance the stability of the final nanoparticles.

The synthesis approaches provided ease of purification by using low molecular and without any organic solvent, and operation at room temperature.
This paper aims to review different synthesis routes of silver nanoparticles and their applications.

nanoComposix | What organic solvent stable …

In this work, we report the synthesis of novel cationic phosphonium gold nanoparticles dispersible in water and dimethyl sulfoxide (DMSO) for their potential use in biomedical applications. All the cationic-functionalising ligands currently reported in the literature are ammonium-based species. Here...

226. Quan Q, Xie J, Gao H. . HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy.  2011;8:1669-76

organic solvent generlly behave like reactive ..

Gold nanoparticles were synthesized using a seed-mediated wet chemical approach with a polymerizable surfactant, 11-(acryloyloxy) undecyltrimethylammonium bromide. The polymerizable surfactant forms a bilayer on the surface of the gold nanoparticles with the quaternary positive head groups facing the bulk water, and the polymerizable groups reside in the hydrophobic region. Evidence for on-particle polymerization using a cationic free radical initiator was confirmed by NMR and FTIR analyses. Ultraviolet-visible spectroscopy, transmission electron microscopy, and dynamic light scattering measurements showed no particle aggregation after polymerization. In contrast to the nanoparticles before polymerization, the nanoparticles with a polymerized bilayer showed remarkable stability against dialysis, centrifugation-resuspension cycles, and extraction with organic solvent. This enhanced stability was linked to the decrease in surfactant desorption from the surface of the gold nanoparticles as evident from mass spectrometry analysis of supernatants. Our results indicate that the use of a polymerizable surfactant as a directing agent to prepare gold nanoparticles and subsequent "fixing" the surfactant bilayer by polymerization is an effective approach to enhance the stability of the final nanoparticles.

Scanning transmission electron micrographs of nanoparticles in organic solvent

Is there any suitable solvent to dissolve Ag nanoparticles?

In this report, we present methods of functionalization of AuNP's with deep-cavity cavitands that can include organic molecules. Two types of deep-cavity cavitand-functionalized AuNP's have been synthesized and characterized, one soluble in organic solvents and the other in water. Functionalized AuNP soluble in organic solvents forms a 1:1 host-guest complex where the guest is exposed to the exterior solvents. The one soluble in water forms a 2:1 host-guest complex where the guest is protected from solvent water. Phosphorescence from thiones and benzil included within heterocapsules attached to AuNP was quenched by gold atoms present closer to the guests included within deep-cavity cavitands. During this investigation, we have synthesized four new deep-cavity cavitands. Of these, two thiol-functionalized hosts allowed us to make stable AuNP's. However, AuNP's protected with two amine-functionalized cavitands tended to aggregate within a day.