Synthesis AG - SyncML Client & Server Solutions

Reduced graphene oxide supporting plasmonic photocatalyst (Ag) on ZnO has been synthesized via a facile two-step microwave synthesis using RGO/ZnO and AgNO3. First step involves fabrication of RGO/ZnO via microwave irradiation. The nanocomposites were characterized by X-ray diffraction analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Ag/RGO/ZnO shows enhanced photoactivity under visible light for the degradation of Rhodamine B. Enhanced charge separation and migration have been assigned using UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectra, and TCSPC analysis. The improved photoactivity of Ag/RGO/ZnO can be ascribed to the prolonged lifetime of photogenerated electron–hole pairs and effective interfacial hybridization between RGO and Ag with ZnO nanoparticles. Ag nanoparticles can absorb visible light via surface plasmon resonance to enhance photocatalytic activity.

Synthesis AG is specialized on SyncML data synchronisation solutions

Synthesis helps agri-food clients and rural communities grow, innovate, adapt and compete.


This article describes a robust method for the facile synthesis of small Ag nanocubes with edge lengths controlled in the range of 18–32 nm. The success of this new method relies on the substitution of ethylene glycol (EG)—the solvent most commonly used in a polyol synthesis—with diethylene glycol (DEG). Owing to the increase in hydrocarbon chain length, DEG possesses a higher viscosity and a lower reducing power relative to EG. As a result, we were able to achieve a nucleation burst in the early stage to generate a large number of seeds and a relatively slow growth rate thereafter; both factors were critical to the formation of Ag nanocubes with small sizes and in high purity (>95%). The edge length of the Ag nanocubes could be easily tailored in the range of 18–32 nm by quenching the reaction at different time points. For the first time, we were able to produce uniform sub-20 nm Ag nanocubes in a hydrophilic medium and on a scale of ∼20 mg per batch. It is also worth pointing out that the present protocol was remarkably robust, showing good reproducibility between different batches and even for DEGs obtained from different vendors. Our results suggest that the high sensitivity of synthesis outcomes to the trace amounts of impurities in a polyol, a major issue for reproducibility and scale up synthesis, did not exist in the present system.

Synthesis AG - SyncML Client Product Downloads

Developing dental restorations with enhanced antibacterial properties has been a constant quest for materials scientists. The aim of this study was to synthesize silver doped calcium phosphate particles and use them to improve antibacterial properties of conventional glass ionomer cement. The Ag doped monetite (Ag-DCPA) and hydroxyapatite (Ag-HA) were synthesized by precipitation method and characterized using X-ray diffraction, scanning electron microscope and X-ray fluorescence spectroscopy. The antibacterial properties of the cements aged for 1 day and 7 days were evaluated by direct contact measurement using staphylococcus epidermis Xen 43. Ion concentrations (F and Ag+) and pH were measured to correlate to the results of the antibacterial study. The compressive strength of the cements was evaluated with a crosshead speed of 1 mm/min. The glass ionomer cements containing silver doped hydroxyapatite or monetite showed improved antibacterial properties. Addition of silver doped hydroxyapatite or monetite did not change the pH and ion release of F. Concentration of Ag+ was under the detection limit (0.001 mg/L) for all samples. Silver doped hydroxyapatite or monetite had no effect on the compressive strength of glass ionomer cement.

Synthesis of Ag doped calcium phosphate ..

Again, there is the prospect of being able to synthesize nanopowders of diamond, cBN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor.

Ag-Graphene Heterostructures (Synthesis, …

Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: Synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants.

Synthesis of Nano-Ag particles using sodium …

Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of ag for dye-sensitized solar cells.