Functions and biosynthesis of plasmalogens in health …

501-511, März 1971 Studies on the Biosynthesis of Plasmalogens Precursors in the Biosynthesis of Plasmalogens: On the Stereospecificity of the Biochemical Dehydrogenation of the 1-0-Alkyl Glyceryl to the l-0-Alk-l'-enyl Glyceryl Ether Bond WILHELM STOFFEL and DAC LEKIM Institut für Physiologische Chemie der Universität Köln1 (Received 27 January 1971) Dedicated to Prof.

Functions and biosynthesis of plasmalogens in health and disease

T1 - Evidence for the participation of cytochrome b5 in plasmalogen biosynthesis

Plasmalogen biosynthesis, regulation, transport and turnover2.1

We have used a fluorescence-activated cytotoxicity protocol, 9-(1′-pyrene)nonanol (P9OH)/UV selection (Morand, O. H., Allen, L.-A. H., Zoeller, R. A., and Raetz, C. R. H. (1990) Biochim. Biophya. Acta 1034, 132-141), to isolate a series of plasmalogen-deficient mutants in a murine, macrophage-like cell line, RAW 264.7. Three of these mutants, RAW.7, RAW.12, and RAW.108, displayed varying degrees of plasmalogen deficiency (48, 17, and 14% of wild-type levels, respectively), and all three mutants were deficient in peroxisomal dihydroxyacetone phosphate (DHAP) acyltransferase activity (5% of wild-type). Unlike previously described Chinese hamster ovary (CHO) cell mutants, the RAW mutants contained intact, functional, peroxisomes and normal levels of alkyl-DHAP synthase activity, a peroxisomal, membrane-bound enzyme. In RAW.7 and RAW.108 cells, the loss of peroxisomal DHAP acyltransferase is the primary lesion. RAW.12 displayed not only a deficiency in the DHAP acyltransferase activity, but also displayed a second lesion in the biosynthetic pathway, a deficiency in Δ1′-desaturase activity (plasmanylethanolamine desaturase, EC 1.14.99.19), the final step in plasmenylethanolamine biosynthesis. The deficiencies expressed in the mutants represent unique lesions in plasmalogen biosynthesis. Since the RAW cell line is a macrophage-like responsive cell line, these mutants can be used to examine the role of plasmalogens in cellular functions such as arachidonic acid metabolism, prostaglandin synthesis, protein secretion, and signal transduction.

Plasmalogens: Biosynthesis and functions | Request PDF

We have used a fluorescence-activated cytotoxicity protocol, 9-(1′-pyrene)nonanol (P9OH)/UV selection (Morand, O. H., Allen, L.-A. H., Zoeller, R. A., and Raetz, C. R. H. (1990) Biochim. Biophya. Acta 1034, 132-141), to isolate a series of plasmalogen-deficient mutants in a murine, macrophage-like cell line, RAW 264.7. Three of these mutants, RAW.7, RAW.12, and RAW.108, displayed varying degrees of plasmalogen deficiency (48, 17, and 14% of wild-type levels, respectively), and all three mutants were deficient in peroxisomal dihydroxyacetone phosphate (DHAP) acyltransferase activity (5% of wild-type). Unlike previously described Chinese hamster ovary (CHO) cell mutants, the RAW mutants contained intact, functional, peroxisomes and normal levels of alkyl-DHAP synthase activity, a peroxisomal, membrane-bound enzyme. In RAW.7 and RAW.108 cells, the loss of peroxisomal DHAP acyltransferase is the primary lesion. RAW.12 displayed not only a deficiency in the DHAP acyltransferase activity, but also displayed a second lesion in the biosynthetic pathway, a deficiency in Δ1′-desaturase activity (plasmanylethanolamine desaturase, EC 1.14.99.19), the final step in plasmenylethanolamine biosynthesis. The deficiencies expressed in the mutants represent unique lesions in plasmalogen biosynthesis. Since the RAW cell line is a macrophage-like responsive cell line, these mutants can be used to examine the role of plasmalogens in cellular functions such as arachidonic acid metabolism, prostaglandin synthesis, protein secretion, and signal transduction.

Biosynthesis of Plasmalogens in Brain | SpringerLink

AB - We have used a fluorescence-activated cytotoxicity protocol, 9-(1′-pyrene)nonanol (P9OH)/UV selection (Morand, O. H., Allen, L.-A. H., Zoeller, R. A., and Raetz, C. R. H. (1990) Biochim. Biophya. Acta 1034, 132-141), to isolate a series of plasmalogen-deficient mutants in a murine, macrophage-like cell line, RAW 264.7. Three of these mutants, RAW.7, RAW.12, and RAW.108, displayed varying degrees of plasmalogen deficiency (48, 17, and 14% of wild-type levels, respectively), and all three mutants were deficient in peroxisomal dihydroxyacetone phosphate (DHAP) acyltransferase activity (5% of wild-type). Unlike previously described Chinese hamster ovary (CHO) cell mutants, the RAW mutants contained intact, functional, peroxisomes and normal levels of alkyl-DHAP synthase activity, a peroxisomal, membrane-bound enzyme. In RAW.7 and RAW.108 cells, the loss of peroxisomal DHAP acyltransferase is the primary lesion. RAW.12 displayed not only a deficiency in the DHAP acyltransferase activity, but also displayed a second lesion in the biosynthetic pathway, a deficiency in Δ1′-desaturase activity (plasmanylethanolamine desaturase, EC 1.14.99.19), the final step in plasmenylethanolamine biosynthesis. The deficiencies expressed in the mutants represent unique lesions in plasmalogen biosynthesis. Since the RAW cell line is a macrophage-like responsive cell line, these mutants can be used to examine the role of plasmalogens in cellular functions such as arachidonic acid metabolism, prostaglandin synthesis, protein secretion, and signal transduction.

Plasmalogen Biosynthesis - Supra-Regional Assay Service

N2 - Using a specific antibody to rat liver cytochrome b5, ethanolamine plasmalogen (1 O alk 1' enyl 2 acyl sn glycerophosphorylethanolamine) synthesis by pork spleen microsomes is shown to require cytochrome b5. Either NADH or NADPH could serve as a source of reducing equivalents. These results provide direct evidence for the involvement of cytochrome b5 in plasmalogen biosynthesis from the corresponding 1 O alkyl ether and suggest a pathway analogous to the fatty acid desaturase system.

Choline plasmalogen synthesis by the methylation pathway ..


A decrease in the biosynthesis of plasmalogens is observed in several peroxisome biogenesis disorders such as the Zellweger syndrome, the neonatal adrenoleukodystrophy and some form of chondrodysplasia ().
The role of choline plasmalogens in neurological diseases and in metabolic and inflammatory disorders has been reviewed ().
The characterization of serum ether glycerophospholipids verified the specificity of choline plasmalogens, particularly the ones with 18:1 in sn -2, as a sensitive biomarker for the atherogenic state ().