There are three types of alternative hypotheses:

When you set up a hypothesis test to determine the validity of a statistical claim, you need to define both a null hypothesis and an alternative hypothesis.

For all three alternatives, the null hypothesis is o: = o.

The null hypothesis implies that the presumed factor being tested has no effect (i.e.,

How do we decide whether to reject the null hypothesis?

When you reject a null hypothesis, there's a chance that you're making a mistake. The null hypothesis might really be true, and it may be that your experimental results deviate from the null hypothesis purely as a result of chance. In a sample of 48 chickens, it's possible to get 17 male chickens purely by chance; it's even possible (although extremely unlikely) to get 0 male and 48 female chickens purely by chance, even though the true proportion is 50% males. This is why we never say we "prove" something in science; there's always a chance, however miniscule, that our data are fooling us and deviate from the null hypothesis purely due to chance. When your data fool you into rejecting the null hypothesis even though it's true, it's called a "false positive," or a "Type I error." So another way of defining the P value is the probability of getting a false positive like the one you've observed, if the null hypothesis is true.

the null and the alternative hypothesis

After you do a statistical test, you are either going to reject or accept the null hypothesis. Rejecting the null hypothesis means that you conclude that the null hypothesis is not true; in our chicken sex example, you would conclude that the true proportion of male chicks, if you gave chocolate to an infinite number of chicken mothers, would be less than 50%.


Null vs Alternative Hypothesis with example ..

The primary goal of a statistical test is to determine whether an observed data set is so different from what you would expect under the null hypothesis that you should reject the null hypothesis. For example, let's say you are studying sex determination in chickens. For breeds of chickens that are bred to lay lots of eggs, female chicks are more valuable than male chicks, so if you could figure out a way to manipulate the sex ratio, you could make a lot of chicken farmers very happy. You've fed chocolate to a bunch of female chickens (in birds, unlike mammals, the female parent determines the sex of the offspring), and you get 25 female chicks and 23 male chicks. Anyone would look at those numbers and see that they could easily result from chance; there would be no reason to reject the null hypothesis of a 1:1 ratio of females to males. If you got 47 females and 1 male, most people would look at those numbers and see that they would be extremely unlikely to happen due to luck, if the null hypothesis were true; you would reject the null hypothesis and conclude that chocolate really changed the sex ratio. However, what if you had 31 females and 17 males? That's definitely more females than males, but is it really so unlikely to occur due to chance that you can reject the null hypothesis? To answer that, you need more than common sense, you need to calculate the probability of getting a deviation that large due to chance.

Null and Alternative Hypothesis | Real Statistics Using Excel

Does a probability of 0.030 mean that you should reject the null hypothesis, and conclude that chocolate really caused a change in the sex ratio? The convention in most biological research is to use a significance level of 0.05. This means that if the P value is less than 0.05, you reject the null hypothesis; if P is greater than or equal to 0.05, you don't reject the null hypothesis. There is nothing mathematically magic about 0.05, it was chosen rather arbitrarily during the early days of statistics; people could have agreed upon 0.04, or 0.025, or 0.071 as the conventional significance level.

Alternative hypothesis - Wikipedia

In the figure above, I used the to calculate the probability of getting each possible number of males, from 0 to 48, under the null hypothesis that 0.5 are male. As you can see, the probability of getting 17 males out of 48 total chickens is about 0.015. That seems like a pretty small probability, doesn't it? However, that's the probability of getting exactly 17 males. What you want to know is the probability of getting 17 or fewer males. If you were going to accept 17 males as evidence that the sex ratio was biased, you would also have accepted 16, or 15, or 14,… males as evidence for a biased sex ratio. You therefore need to add together the probabilities of all these outcomes. The probability of getting 17 or fewer males out of 48, under the null hypothesis, is 0.030. That means that if you had an infinite number of chickens, half males and half females, and you took a bunch of random samples of 48 chickens, 3.0% of the samples would have 17 or fewer males.

alternative hypothesis explanation free

The significance level (also known as the "critical value" or "alpha") you should use depends on the costs of different kinds of errors. With a significance level of 0.05, you have a 5% chance of rejecting the null hypothesis, even if it is true. If you try 100 different treatments on your chickens, and none of them really change the sex ratio, 5% of your experiments will give you data that are significantly different from a 1:1 sex ratio, just by chance. In other words, 5% of your experiments will give you a false positive. If you use a higher significance level than the conventional 0.05, such as 0.10, you will increase your chance of a false positive to 0.10 (therefore increasing your chance of an embarrassingly wrong conclusion), but you will also decrease your chance of a false negative (increasing your chance of detecting a subtle effect). If you use a lower significance level than the conventional 0.05, such as 0.01, you decrease your chance of an embarrassing false positive, but you also make it less likely that you'll detect a real deviation from the null hypothesis if there is one.