Surface functionalized magnetic iron oxide nanoparticles ..

Savla et al. reported the preparation of tumor-targeted, pH-responsive QD-mucin1 aptamer-doxorubicin conjugate for the chemotherapy of ovarian cancer []. Basically, the QDs were conjugated with a DNA aptamer specific for mutated MUC1 mucin that is overexpressed in ovarian carcinoma. Doxorubicin was then attached to QD through a pH-sensitive hydrazone bond to provide long-term stability of the complex in systemic circulation and drug release in the acidic environment within tumor cells. The hydrazone bond is stable at neutral and slight basic pH and undergoes rapid hydrolysis at mildly acidic pH. studies showed that the QD conjugates had higher cytotoxicity than that of the free doxorubicin in cancer cells. More importantly, the QD conjugates were found to be preferably accumulated in the ovarian tumor. The study shows that the proposed QD conjugate has the potential for treating ovarian cancer and .

Synthesis of Iron Oxide Nanoparticles by Using …

Plant-Mediated Green Synthesis of Iron Nanoparticles

Gold-coated iron nanoparticles: a novel magnetic …

"Typically, the synthesis of oxide nanoparticles involves the slow reaction of a weak oxidizing agent, such as hydrogen peroxide, with dilute solutions of metal salts or complexes in both aqueous and non-aqueous solvent systems," said Dr. Thomas Sutto, NRL research chemist. "The rapid exothermic reaction of potassium superoxide with the salt solutions results in the formation of insoluble oxide or hydroxide nanoparticulates."

Magnetic iron oxide nanoparticles: Synthesis and applications

Oxide nanoparticles have been shown to be crucial components in numerous applications to include electronic and magnetic devices, energy storage and generation, and medical applications such as magnetic nanoparticles for use in magnetic resonance imaging (MRI). In all of these applications, particle size is critical to the utility and function of oxide nanoparticles—decreased particles size results in increased surface area, which can significantly improve the performance of the oxide nanoparticle.


Iron Oxide (Fe3O4) Nanopowder / Nanoparticles

AB - Polyethylene glycol (PEG) is an established grafting agent for engineered materials deployed in aqueous environments including biological systems. Phosphorylcholine (PC) has shown promise as a viable strategy for enhancing the biofunctionality of surfaces and structures. Here we developed a new and facile strategy for grafting superparamagnetic iron oxide nanoparticles (IONPs) by phosphonic acid terminated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes, synthetized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Properties of covalently bound IONPs with PC, PEG or PEG:PC brush-like structures via a "grafting onto" approach through robust bidentate Fe-O-P bonds were compared. The presence of modified polymers on the functionalized IONP surfaces was proved using both ATR-FTIR and TGA. The resultant synthesized IONPs were characterized for their physicochemical and biological aspects. Interestingly, compared with PEG combs, specifically, PC brushes rendered comparable or enhanced suspendability, stability, biocompatibility and cellular distribution. We attribute these characteristics to the biomimetic nature and larger polarity of PC in contrast to the synthetic and hydrophilic PEG. These synthesis strategies and characterizations may prove beneficial to the design and applications of IONPs in nanobiotechnology and nanomedicine.

Curing Cancer with Magnetic Nanoparticles

Porous iron oxide nanoparticles are displayed inFigure 4C; these samples are predominantly hematite, as evidenced from the of nanoparticle dispersions.

Magnetic metrology for iron oxide nanoparticle scaled …

Scientists at the U.S. Naval Research Laboratory (NRL) Materials Science and Technology Division have developed a novel one-step process using, for the first time in these types of syntheses, potassium superoxide (KO2) to rapidly form oxide nanoparticles from simple salt solutions in water.

Iron Oxide Fe3O4 Nanopowder / Nanoparticles (Fe3O4…

N2 - Polyethylene glycol (PEG) is an established grafting agent for engineered materials deployed in aqueous environments including biological systems. Phosphorylcholine (PC) has shown promise as a viable strategy for enhancing the biofunctionality of surfaces and structures. Here we developed a new and facile strategy for grafting superparamagnetic iron oxide nanoparticles (IONPs) by phosphonic acid terminated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes, synthetized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Properties of covalently bound IONPs with PC, PEG or PEG:PC brush-like structures via a "grafting onto" approach through robust bidentate Fe-O-P bonds were compared. The presence of modified polymers on the functionalized IONP surfaces was proved using both ATR-FTIR and TGA. The resultant synthesized IONPs were characterized for their physicochemical and biological aspects. Interestingly, compared with PEG combs, specifically, PC brushes rendered comparable or enhanced suspendability, stability, biocompatibility and cellular distribution. We attribute these characteristics to the biomimetic nature and larger polarity of PC in contrast to the synthetic and hydrophilic PEG. These synthesis strategies and characterizations may prove beneficial to the design and applications of IONPs in nanobiotechnology and nanomedicine.