How do oxygen atoms tie into photosynthesis and …

A lot of my college students still have trouble with this one. The reactions that happen in respiration and photosynthesis are different, but if we just look at what goes in and what comes out, they're opposites.

Here's photosynthesis:
Carbon dioxide (CO2) and Water (H20) in, Oxygen and Sugar out.
Requires energy from the sun.

Here's cellular respiration:
Oxygen and Sugar in, CO2 and H20 out. Releases energy from the sugar.

Plants can do both. When they have light, they use it as an energy source to put the pieces of CO2 and H2O to make sugar. They can put a bunch of sugars together to make starch (what foods are starchy?), cellulose (the stringy stuff you can't chew up), and wood.

When it's dark, they can do cellular respiration to break down the starch and sugar to release the energy they need.

Poor animals, we can only do cellular respiration. We need foods like starch, and oxygen, and we breathe out the CO2 that's made. We don't get enough water from the process to take care of all of our needs so we have to drink more. Kangaroo rats don't have to drink water. They conserve water a lot better than we do.

Can plants live without animals? Can animals live without plants?
Thanks for asking.

During photosynthesis, unused oxygen atoms form oxygen …

How many oxygen atoms are in the products of the following reaction c6h12o6 6 ..

How many oxygen atoms are in 12 h2o

During photosynthesis, a plant is able to convert solar energy into a chemical form. It does this by capturing light coming from the sun and, through a series of reactions, using its energy to help build a sugar molecule called glucose. Glucose is made of six carbon atoms, six oxygen atoms, and twelve hydrogen atoms. When the plant makes the glucose molecule, it gets the carbon and oxygen atoms it needs from carbon dioxide, which it takes from the air. Carbon dioxide doesn't have any hydrogen in it, though, so the plant must use another source for hydrogen. The source that it uses is water. There is a lot of water on the earth, and every water molecule is composed of two hydrogen atoms and one oxygen atom. In order to take the hydrogen it needs to build glucose molecules, the plant uses the energy from the sun to break the water molecule apart, taking electrons and hydrogen from it and releasing the oxygen into the air. The electrons it takes are put into an electron transport system, where they are used to produce energy molecules called ATP that are used to build the glucose molecule-- all made possible by the sun's energy. Thus, during photosynthesis a plant consumes water, carbon dioxide, and light energy, and produces glucose and oxygen.

The sugar glucose is important because it is necessary for cellular respiration. During cellular respiration, the chemical energy in the glucose molecule is converted into a form that the plant can use for growth and reproduction. In the first step of respiration, called glycolysis, the glucose molecule is broken down into two smaller molecules called pyruvate, and a little energy is released in the form of ATP. This step in respiration does not require any oxygen and is therefore called anaerobic respiration. In the second step of respiration, the pyruvate molecules are rearranged and combined and rearranged again in a cycle. While the molecules are being rearranged in this cycle, carbon dioxide is produced, and electrons are pulled off and passed into an electron transport system which, just as in photosynthesis, generates a lot of ATP for the plant to use for growth and reproduction. This last step requires oxygen, and therefore is called aerobic respiration. Thus, the final result of cellular respiration is that the plant consumes glucose and oxygen and produces carbon dioxide, water, and ATP energy molecules.

At first, this doesn't seem to make any sense! If the plant can use the energy from the sun to make ATP, why does it go through all the trouble of then using up the ATP to make glucose, just so it can get ATP again? There are two reasons why the plant does this. First, in addition to ATP, the plant needs materials to grow. Glucose is an important building block that is necessary to produce all of the proteins, DNA, cells, tissues, etc. that are important to life, growth, and reproduction. Second, one problem with the sun is that it goes away every night, and during winter it isn't very bright. The plant needs energy all of the time. So, by producing glucose, the plant can store this molecule and then use it to produce energy during the night and over winter when there isn't enough sun to provide good photosynthesis.

It is very interesting how photosynthesis and cellular respiration help each other. During photosynthesis, the plant needs carbon dioxide and water-- both of which are released into the air during respiration. And during respiration, the plant needs oxygen and glucose, which are both produced through photosynthesis! So in a way, the products of photosynthesis support respiration, and the products of respiration support photosynthesis, forming a cycle.

While plants can complete this cycle by themselves, animals cannot, since animals aren't capable of photosynthesis! This means that animals have to survive solely through respiration. Also, since we animals can't produce glucose by ourselves, we have to get it from somewhere else-- from eating plants. We produce carbon dioxide that the plants need, and they produce the oxygen that we need, and then we eat them to get the glucose that we need. It seems that we need the plants a lot more than they need us!

Oxygen atoms in the oxygen gas produced by photosynthesis comes ..

The occurrence of photosynthesis is very important to us as humans, because it provides us with the oxygen we need to breathe and plants are at the bottom of every food-chain and so without them, I would collapse....

In photosynthesis the oxygen atoms from where ..
isotope of oxygen to follow the fate of oxygen atoms during photosynthesis:

so oxygen does not come into contact with rubisco

I believe this will happen because when the light source is nearer to the plant more of the plants surface area is coming in to contact with the light from the desk lamp therefore more photosynthesis will occur which will mean more oxygen will be produced which will create more bubbles....

During photosynthesis, unused oxygen atoms form oxygen gas (O2) which is released as a waste product. How did these oxygen atoms originally enter the - 2141504

so the individual oxygen atoms join together two-by-two and form ..

We often want to imitate nature for near perfect results. But sometimes it just remains a desire. In its quest for green and clean energy mankind is searching for that magical method that can split water into hydrogen and oxygen. Nature performs this task wonderfully through the process of photosynthesis. Man is still facing challenges in duplicating that process in the laboratory. If we are able to split water into oxygen and hydrogen in the presence of sunlight we will be able to harness the potential of as a clean and green fuel. Till date man-made systems are quite inefficient, time consuming, money consuming and often require additional use of chemical agents.

Sulfur bacteria use hydrogen sulfide (H 2 S) as a source of hydrogen atoms and produce sulfur instead of oxygen during photosynthesis.

Cellular Respiration: Using Oxygen to Break Down …

(If you didn’t have oxygen around at the end of the chain to collect the electrons, no energy transfer could occur.) When oxygen accepts the electrons, it also picks up protons (H+) and becomes water (H2O).The proteins of the electron transport chain are like a bucket brigade that works by one person dumping a bucket full of water into the next person’s bucket.