A facile method for synthesis of gold nanotubes and …

N2 - The synthesis of carbon nanotubes (CNTs) through the catalytic decomposition of acetylene was carried out over gold nanoparticles supported on SiO2-Al2O3. Monodispersed gold nanoparticles with 1.3-1.8 nm in diameter were prepared by the liquid-phase reduction method with dodecanethiol as protective agent. The carbon products formed after acetylene decomposition consist of multi-walled carbon nanotubes with layered graphene sheets, carbon nanofilaments (CNFs), and carbon nanoparticles encapsulating gold particles. The observed CNTs have outer diameters of 13-25 nm under 850 °C. The influence of several reaction parameters, such as kind of carriers, reaction temperature, gas flow rate, was investigated to search for optimum reaction conditions. The CNTs were observed at a relatively low temperature (550°C). The silica-alumina carrier showed higher activity for the formation of CNTs than others used in the screening test. With increasing temperature, the CNTs showed cured structures having thick diameters and inside compartments. When Au content on the support was over 5 wt.%, the gold nanoparticles coagulated to form large ones >20 nm in diameter and became encapsulated with graphene layers after decomposition of acetylene.

GOLD MICRO- AND NANOTUBES, THEIR SYNTHESIS AND …

Gold nanotubes with SiOx nanowires as sacrificial templates have been synthesized

Synthesis of Carbon Nanotubes/Gold Nanoparticles …

The synthesis of carbon nanotubes (CNTs) through the catalytic decomposition of acetylene was carried out over gold nanoparticles supported on SiO2-Al2O3. Monodispersed gold nanoparticles with 1.3-1.8 nm in diameter were prepared by the liquid-phase reduction method with dodecanethiol as protective agent. The carbon products formed after acetylene decomposition consist of multi-walled carbon nanotubes with layered graphene sheets, carbon nanofilaments (CNFs), and carbon nanoparticles encapsulating gold particles. The observed CNTs have outer diameters of 13-25 nm under 850 °C. The influence of several reaction parameters, such as kind of carriers, reaction temperature, gas flow rate, was investigated to search for optimum reaction conditions. The CNTs were observed at a relatively low temperature (550°C). The silica-alumina carrier showed higher activity for the formation of CNTs than others used in the screening test. With increasing temperature, the CNTs showed cured structures having thick diameters and inside compartments. When Au content on the support was over 5 wt.%, the gold nanoparticles coagulated to form large ones >20 nm in diameter and became encapsulated with graphene layers after decomposition of acetylene.

What is Carbon Nanotube Synthesis? - nanogloss

AB - The synthesis of carbon nanotubes (CNTs) through the catalytic decomposition of acetylene was carried out over gold nanoparticles supported on SiO2-Al2O3. Monodispersed gold nanoparticles with 1.3-1.8 nm in diameter were prepared by the liquid-phase reduction method with dodecanethiol as protective agent. The carbon products formed after acetylene decomposition consist of multi-walled carbon nanotubes with layered graphene sheets, carbon nanofilaments (CNFs), and carbon nanoparticles encapsulating gold particles. The observed CNTs have outer diameters of 13-25 nm under 850 °C. The influence of several reaction parameters, such as kind of carriers, reaction temperature, gas flow rate, was investigated to search for optimum reaction conditions. The CNTs were observed at a relatively low temperature (550°C). The silica-alumina carrier showed higher activity for the formation of CNTs than others used in the screening test. With increasing temperature, the CNTs showed cured structures having thick diameters and inside compartments. When Au content on the support was over 5 wt.%, the gold nanoparticles coagulated to form large ones >20 nm in diameter and became encapsulated with graphene layers after decomposition of acetylene.

Synthesis of gold nanoclusters: A fluorescent marker for water-soluble TiO 2 nanotubes

Science of Advanced Materials (SAM) - New Titles at …

Nanoscale particles are not new in either nature or science

Materials | Free Full-Text | Zinc Oxide—From Synthesis …