T1 - Biosynthesis of the major brain gangliosides GD1a and GT1b

The antibiotic tunicamycin blocks the transfer of GlcNAc-1-P from UDP-GlcNAc to dolichol phosphate, thereby blocking the synthesis of N-linked oligosaccharide chains on glycoproteins. Its effect on the biosynthesis of gangliosides has not been reported. We report that tunicamycin caused a 70-80% reduction in incorporation of [3H]GlcN into gangliosides and neutral glycosphingolipids of the neuroblastoma-glioma hybrid cell line NG 108-15 at antibiotic concentrations that caused a 90% reduction of the radiolabel incorporation into glycoproteins. The effect of tunicamycin on ganglioside biosynthesis was apparent after only 4 hr of incubation, and maximum inhibition was seen within 6 hr. When control or tunicamycin-treated (5 μg/ml) cells were collected and fractionated to separate glycoproteins, neutral glycosphingolipids, gangliosides, and nucleotide sugar-precursor pools, the following results were obtained: (i) UDP-GlcNAc and UDP-GalNAc pool sizes increased >3-fold, and specific activities decreased 50% upon treatment with tunicamycin; (ii) when corrected for this value, the percentage inhibition of GlcN incorporation into various glycoconjugates by tunicamycin in these cells was 82% for glycoproteins, 54% for neutral glycosphingolipids, and 50% for gangliosides; and (iii) the different gangliosides were affected differentially, with the most striking inhibition apparent in GM3 biosynthesis, which was decreased 78% in the presence of tunicamycin. These data suggest that the effects of tunicamycin on glycosphingolipids as well as on glycoproteins must be considered when interpreting its effects on intact cells and organisms.

T1 - Regulation of ganglioside biosynthesis in the nervous system

T1 - Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia

Ganglioside biosynthesis in rat liver: Effect of UDP …

Ganglioside biosynthesis is strictly regulated by the activities of glycosyltransferases and is necessarily controlled at the levels of gene transcription and posttranslational modification. Cells can switch between expressing simple and complex gangliosides or between different series within these two groups during brain development. The sequential biosynthesis of gangliosides in parallel enzymatic pathways, however, requires fine-tuned subcellular sequestration and orchestration of glycosyltransferases. A popular model predicts that this regulation is achieved by the vectorial organization of ganglioside biosynthesis: sequential biosynthetic steps occur with the traffic of ganglioside intermediates through subsequent subcellular compartments. Here, we review current models for the subcellular distribution of glycosyltransferases and discuss results that suggest a critical role of N-glycosylation for the processing, transport, and complex formation of these enzymes. In this context, we attempt to illustrate the regulation of ganglioside biosynthesis as well as the biological significance of N-glycosylation as a posttranslational regulatory mechanism. We also review the results of analyses of the 5′ regulatory sequences of several glycosyltransferases in ganglioside biosynthesis and provide insights into how their synthesis can be regulated at the level of transcription.

Biosynthesis and functions of gangliosides ..

Three key regulatory enzymes in ganglioside biosynthesis, sialyltransferase I (ST1), sialyltransferase II (ST2), and N-acetylgalactosaminyltransferase I (GalNAcT), have been expressed as fusion proteins with green, yellow, or red fluorescent protein (GFP, YFP, or RFP) in F-11A cells. F-11A cells are a substrain of murine neuroblastoma F-11 cells that contain only low endogenous ST2 and GalNAcT activity. The subcellular localization of the fusion proteins has been determined by fluorescence microscopy, and the ganglioside composition of these cells was analyzed by high-performance thin-layer chromatography (HPTLC). ST2-GFP (85 kDa) shows a distinct Golgi localization, whereas ST1-YFP (85 kDa) and GalNAcT-RFP (115 kDa) are broadly distributed in ER and Golgi. Untransfected F-11A cells contain mainly GM3, whereas stable transfection with ST2 or GalNAcT results in the predominant expression of b-series complex gangliosides (BCGs). This result indicates that the expression of ST2 enhances the activity of endogenous GalNAcT and vice versa. The specificity of this reaction has been verified by in vitro activity assays with detergent-solubilized enzymes, suggesting the formation of an enzyme complex between ST2 and GalNAcT but not with ST1. Complex formation has also been verified by co-immunoprecipitation of ST2-GFP upon transient transfection with GalNAcT-HA-RFP and by GFP-to-RFP FRET signals that are confined to the Golgi. FRET analysis also suggests that ST2-GFP binds tightly to pyrene-labeled GM3 but not to ST1. We hypothesize that an ST2-GM3 complex is associated with GalNAcT, resulting in the enhanced conversion of GM3 to GD3 and BCGs in the Golgi. Taken together, our results support the concept that ganglioside biosynthesis is tightly regulated by the formation of glycosyltransferase complexes in the ER and/or Golgi.

T1 - Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis.
T1 - Regulation of ganglioside biosynthesis by enzyme complex formation of glycosyltransferases

Biosynthesis of the major brain gangliosides GD1a and GT1b

AB - Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.

Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia

the Biosynthesis of Piglet Brain Gangliosides.

AB - Ganglioside biosynthesis is strictly regulated by the activities of glycosyltransferases and is necessarily controlled at the levels of gene transcription and posttranslational modification. Cells can switch between expressing simple and complex gangliosides or between different series within these two groups during brain development. The sequential biosynthesis of gangliosides in parallel enzymatic pathways, however, requires fine-tuned subcellular sequestration and orchestration of glycosyltransferases. A popular model predicts that this regulation is achieved by the vectorial organization of ganglioside biosynthesis: sequential biosynthetic steps occur with the traffic of ganglioside intermediates through subsequent subcellular compartments. Here, we review current models for the subcellular distribution of glycosyltransferases and discuss results that suggest a critical role of N-glycosylation for the processing, transport, and complex formation of these enzymes. In this context, we attempt to illustrate the regulation of ganglioside biosynthesis as well as the biological significance of N-glycosylation as a posttranslational regulatory mechanism. We also review the results of analyses of the 5′ regulatory sequences of several glycosyltransferases in ganglioside biosynthesis and provide insights into how their synthesis can be regulated at the level of transcription.

Tunicamycin inhibits ganglioside biosynthesis in …

ganglioside biosynthesis 2 - QM SBCS

T1 - Metabolism of exogenous ganglioside GM1 in cultured cerebellar granule cells The fatty acid and sphingosine moieties formed during degradation are re-used for lipid biosynthesis