4. Explain the role of water in photosynthesis. 4 marks

Most terrestrial plants fix atmospheric CO2 into carbohydrates via the C3 photosynthetic pathway and its initial three-carbon fixation product (Section 2.1). Millions of years of evolution under conditions of water limitation, temperature variations and glacial CO2 concentrations have produced higher plants with significant biochemical variants for fixation of atmospheric CO2 into carbohydrate, namely C4 (initial four-carbon fixation product), CAM (crassulacean acid metabolism) and SAM (submerged aquatic macrophytes) (Section 2.2).

Discuss the role of pigments both in capturing light ..

Describe the role of ATP in the process of photosynthesis

Explain the role of water in photosynthesis

As an example, the C4 grasses of the northern Australian savannas are relatively un-shaded because of the low tree density and sparse canopy. Light is abundant and since the CO2 concentration inside C4 leaves is high, a potentially high rate of light-saturated assimilation can be exploited. Most C3 species reach light saturation in the range of one-eight to one-half full sunlight (Figure 2.7). In C4 species, canopy assimilation might not become light saturated even in full sunlight. C4 plants thus maintain a competitive advantage over C3 plants in tropical locations, where average daily light receipt is much larger than in temperate zones, and associated with warmer conditions that also favour C4 photosynthesis (Figure 2.6). Given strong sunlight, warmth and seasonally abundant water, biomass production by C4 plants is commonly double the rate for C3 plants. Typically, C3 plants produce 15–25 t ha–1 but C4 plants easily produce 35–45 t ha–1.

Figure 1 shows a scheme of the NADP-ME subtype of C 4 photosynthesis

The fundamental paradigm underpinning the efficiency of C4 photosynthesis in terrestrial plants is the ‘division of labour’ between the initial fixation of CO2 into C4 acids, and their subsequent utilisation to generate high concentrations of CO2 for ultimate fixation by Rubisco. The basic model for C4 plants with classical kranz anatomy consists of two photosynthetic cycles (C3 and C4) operating across two photosynthetic cell types (mesophyll and bundle sheath), with strict cell- and organelle-specific localisation of key enzymes and with sufficient resistance to CO2 back-diffusion. Indeed, the discovery of the kranz anatomy by Haberlandt preceded that of C4 biochemistry by a century. The prevailing consensus has been that efficient C4 photosynthesis necessitates the collaboration of two cell types.

Salinity Stress and Salt Tolerance | InTechOpen

Recently, this notion has been challenged by the discovery of non-kranz or single-cell C4 photosynthesis in shrubs (Borszczowia aralocaspica and Bienertia cycloptera; Chenopodiaceae family) found in the salt deserts of Central Asia (Voznesenskaya et al. 2002, 2003). These plants show CO2 and O2 responses typical of C4 photosynthesis but lack the kranz anatomy. They perform C4 photosynthesis through the spatial localisation of dimorphic chloroplasts (as well as other organelles and photosynthetic enzymes) in distinct positions within a single chlorenchyma cell. Yet, the details of the partitioning differ between the two species (Edwards et al. 2004).

All Publications By Subject | ACIAR

The C4 pathway supercharges photosynthesis and suppresses photorespiration by operating a CO2 concentrating mechanism which elevates CO2 around Rubisco. Although C4 photosynthesis incurs additional energy, the energy cost of photorespiration exceeds that of the CO2 concentrating mechanism above 25oC. Hence, higher radiation use efficiencies (i.e., efficiency of converting absorbed radiation into biomass) have been recorded for C4 than C3 crops. High bundle sheath CO2 concentration saturates C4 photosynthesis at relatively low intercellular CO2, allowing C4 plants to operate with lower stomatal conductance. Thus, leaf-level WUE is usually higher in C4 than C3 plants. Relative to C3 plants, Rubisco of C4 plants is faster (higher turnover rate) and operates under saturating CO2. Thus, C4 plants typically achieve higher photosynthetic rates with about 50% less Rubisco and less leaf nitrogen. Hence, photosynthetic NUE is higher in C4 than C3 plants. Accordingly, C4 plants are advantaged relative to C3 plants in hot and nitrogen-poor environments with short growing seasons, hence their great abundance in wet/dry tropics such as Northern Territory savannas.

Full text of "NEW" - Internet Archive

Rubisco is characterised by its low affinity for its productive substrate, CO2 and slow catalytic turnover rate (i.e., 1-3 cycles per sec). Importantly, Rubisco reacts with O2 (photorespiration), and this culminates in loss of CO2 and energy. In C3 plants, photorespiration can drain more than 25% of fixed CO2 under non-stressful conditions. The ratio of photorespiration to photosynthesis increases with increasing temperature and decreasing intercellular CO2 such as occurs when stomatal conductance is reduced under water stress. C3 plants compensate for Rubisco’s inefficiencies by (i) opening their stomata to increase CO2 diffusion into chloroplasts, which increases water loss and lowers leaf-level water use efficiency, WUE; and (ii) investing up to 50% of leaf nitrogen in Rubisco, which lowers their leaf-level nitrogen use efficiency, NUE.