T1 - Design, synthesis and evaluation of new RDP inhibitors

N2 - A series of potent and selective proline- and pyrazinone-based macrocyclic thrombin inhibitors is described. Detailed SAR studies led to the incorporation of specific functional groups in the tether that enhanced functional activity against thrombin and provided exquisite selectivity against trypsin and tPA. X-ray crystallography and molecular modeling studies revealed the inhibitor-enzyme interactions responsible for this selectivity.

Design and Synthesis of Proteinase Inhibitors | …

T1 - Design and synthesis of new piperidone grafted acetylcholinesterase inhibitors

Design and synthesis of thrombin inhibitors | SpringerLink

N2 - Selective inhibitors of neuronal nitric oxide synthase (nNOS) have the potential to develop into new neurodegenerative therapeutics. Recently, we described the discovery of novel nNOS inhibitors (1a and 1b) based on a cis-pyrrolidine pharmacophore. These compounds and related ones were found to have poor blood-brain barrier permeability, presumably because of the basic nitrogens in the molecule. Here, a series of monocationic compounds was designed on the basis of docking experiments using the crystal structures of 1a,b bound to nNOS. These compounds were synthesized and evaluated for their ability to inhibit neuronal nitric oxide synthase. Despite the excellent overlap of these compounds with 1a,b bound to nNOS, they exhibited low potency. This is because they bound in the nNOS active site in the normal orientation rather than the expected flipped orientation used in the computer modeling. The biphenyl or phenoxyphenyl tail is disordered and does not form good protein-ligand interactions. These studies demonstrate the importance of the size and rigidity of the side chain tail and the second basic amino group for nNOS binding efficiency and the importance of the hydrophobic tail for conformational orientation in the active site of nNOS.

Design and Synthesis of 5Lipoxygenase Inhibitors | …

AB - The indenoisoquinolines are a novel class of topoisomerase I (top1) inhibitors that are cytotoxic in cancer cell cultures and are therefore under development as potential anticancer agents. As inhibitors of the DNA religation reaction occurring after DNA cleavage by the enzyme, they are classified as top1 poisons, similar to the camptothecins. Two strategies were employed in order to further develop the structure-activity relationships of the indenoisoquinolines and enhance their therapeutic potential. The first strategy involved the synthesis of indenoisoquinoline-camptothecin hybrid molecules to take advantage of a proposed structural analogy between the indenoisoquinolines and camptothecin. The desired hybrids were synthesized by reaction of halogenated phthalides with a dihydropyrroloquinoline. The second strategy involved the attachment of various alkenyl substituents to the C-11 position of the indenoisoquinolines, which were assumed to project into the DNA minor groove. The required C-11-substituted indenoisoquinolines were synthesized by McMurry reactions of 11-ketoindenoisoquinolines with aldehydes, and the geometries of the resulting alkenes were established by nuclear Overhauser effect difference NMR spectroscopy. All of the new indenoisoquinolines were examined for cytotoxicity in human cancer cell cultures as well as for activity vs top1. Although the indenoisoquinoline-camptothecin hybrid molecules proved to be less cytotoxic and displayed less activity against top1, an analogue incorporating a 3′-aminoalkenyl substituent at the C-11 position of the indenoisoquinoline system was significantly more potent than the prototype indenoisoquinoline in both assays. These results indicate that C-11 aminoalkyl substituents that are assumed to project into the minor groove enhance the cytotoxicity and top1 inhibitory activity of the parent indenoisoquinoline system.

T1 - Design and synthesis of potent and selective macrocyclic thrombin inhibitors
Adhesion, recognition, protein stability, transport and folding are all greatly influenced by saccharides.

Design and synthesis of inhibitors of ..

The indenoisoquinolines are a novel class of topoisomerase I (top1) inhibitors that are cytotoxic in cancer cell cultures and are therefore under development as potential anticancer agents. As inhibitors of the DNA religation reaction occurring after DNA cleavage by the enzyme, they are classified as top1 poisons, similar to the camptothecins. Two strategies were employed in order to further develop the structure-activity relationships of the indenoisoquinolines and enhance their therapeutic potential. The first strategy involved the synthesis of indenoisoquinoline-camptothecin hybrid molecules to take advantage of a proposed structural analogy between the indenoisoquinolines and camptothecin. The desired hybrids were synthesized by reaction of halogenated phthalides with a dihydropyrroloquinoline. The second strategy involved the attachment of various alkenyl substituents to the C-11 position of the indenoisoquinolines, which were assumed to project into the DNA minor groove. The required C-11-substituted indenoisoquinolines were synthesized by McMurry reactions of 11-ketoindenoisoquinolines with aldehydes, and the geometries of the resulting alkenes were established by nuclear Overhauser effect difference NMR spectroscopy. All of the new indenoisoquinolines were examined for cytotoxicity in human cancer cell cultures as well as for activity vs top1. Although the indenoisoquinoline-camptothecin hybrid molecules proved to be less cytotoxic and displayed less activity against top1, an analogue incorporating a 3′-aminoalkenyl substituent at the C-11 position of the indenoisoquinoline system was significantly more potent than the prototype indenoisoquinoline in both assays. These results indicate that C-11 aminoalkyl substituents that are assumed to project into the minor groove enhance the cytotoxicity and top1 inhibitory activity of the parent indenoisoquinoline system.

Proteases are involved in a myriad of biological processes and are considered good targets for drug design.

2. Mechanism-based Design and Synthesis of Enzyme …

The proteases described herein are cysteine proteases, which utilize a cysteine residue thiol to attack the amide carbonyl, leading to amide bond cleavage.

We are developing new methods to synthesize glycoproteins and to develop glycosyltransfer enzyme inhibitors.

Design and Synthesis of Inhibitors : Research : Prof

A series of potent and selective proline- and pyrazinone-based macrocyclic thrombin inhibitors is described. Detailed SAR studies led to the incorporation of specific functional groups in the tether that enhanced functional activity against thrombin and provided exquisite selectivity against trypsin and tPA. X-ray crystallography and molecular modeling studies revealed the inhibitor-enzyme interactions responsible for this selectivity.